Application of Non-Dominated Sorting Genetic Algorithm (NSGA-II) to Increase the Efficiency of Bakery Production: A Case Study
نویسندگان
چکیده
Minimizing the makespan is an important research topic in manufacturing engineering because it accounts for significant production expenses. In bakery manufacturing, ovens are high-energy-consuming machines that run throughout time. Finding optimal combination of and oven idle time decisive objective space can result substantial financial savings. This paper investigates hybrid no-wait flow shop problems from bakeries. Production scheduling multiple goods lines optimized using Pareto-based multi-objective optimization algorithms, non-dominated sorting genetic algorithm (NSGA-II), a random search algorithm. NSGA-II improved NSGA, leading to better convergence spread solutions space, by removing computational complexity adding elitism diversity strategies. Instead single solution, set represents trade-offs between objectives, improve cost-effectiveness. Computational results actual instances show algorithms significantly outperform existing schedules. The finds complete cases, whereas procedure only delivers subset. study shows application reduce 1.7% 26% while minimizing up 12%. Furthermore, penalizing best marginal amount, alternative minimize 61% compared schedule. proposed strategy be effective small medium-sized bakeries lower costs CO2 emissions.
منابع مشابه
Optimal Distribution System Reconfiguration Using Non-dominated Sorting Genetic Algorithm (NSGA-II)
In this paper, a Non-dominated Sorting Genetic Algorithm-II (NSGA-II) based approach is presented for distribution system reconfiguration. In contrast to the conventional GA based methods, the proposed approach does not require weighting factors for conversion of multi-objective function into an equivalent single objective function. In order to illustrate the performance of the proposed method,...
متن کاملOptimal Placement of Phasor Measurement Units to Maintain CompleteObservability Considering Maximum Reliability by Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
Ever-increasing energy demand has led to geographic expansion of transmission lines and their complexity. In addition, higher reliability is expected in the transmission systemsdue to their vital role in power systems. It is very difficult to realize this goal by conventional monitoring and control methods. Thus, phasor measurement units (PMUs) are used to measure system parameters. Although in...
متن کاملVoltage Stability Constrained Optimal Power Flow Using Non-dominated Sorting Genetic Algorithm-II (NSGA II)
Voltage stability has become an important issue in planning and operation of many power systems. Contingencies such as unexpected line outages in a stressed system may often result in voltage instability, which may lead to voltage collapse. This paper presents evolutionary algorithm techniques like Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) approach for solv...
متن کاملA Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
Abstract. Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) computational complexity (where is the number of objectives and is the population size), (ii) non-elitism approach, and (iii) the need for specifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-objective evolutionary algor...
متن کاملA Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II
Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) O(mN3) computational complexity (where m is the number of objectives and N is the population size), (ii) non-elitism approach, and (iii) the need for specifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-objective evolutionary algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Processes
سال: 2022
ISSN: ['2227-9717']
DOI: https://doi.org/10.3390/pr10081623